
International Conference
on Approximation Theory

and Applications
Cetraro, 18–22 June 2023
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Motivated by applications to gas filtration problems, and therefore assuming that n = 2 or
n = 3, we first want to verify if there exists a (unique) numerical solution ũ to the Cauchy-
Dirichlet problem
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once the domain ⌦ ⇢ Rn and the initial-boundary conditions have been chosen in a suitable and
significant way and evaluate its qualitative features.
After introducing a suitable family {P"}"> 0 of Cauchy-Dirichlet problems which approximate
(1) in a certain sense as " ! 0, we aim to understand whether the numerical solution ũ" of P"

converges in a suitable sense to the solution ũ when " approaches zero.
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A generalization of the notion of A-frame [4] to the continuous setting and for a densely
defined and possibly unbounded operator A on a Hilbert space H (with domain D(A)) has been
introduced and studied in [2]. Equivalent formulations in terms of atomic systems, existence
results and some characterizations are given. As it is known, if the operator A is bounded in H,
then every element Af in R(A), the range of A, can be decomposed as a combination of a family
of vectors (the elements of an A-frame, which are a Bessel family and do not necessarily belong
to R(A)) with coefficients continuously depending on f , see e.g. [4] and [5]. On the contrary, the
unboundedness of A leads to the fact that, in a similar decomposition of the elements in R(A),
the coefficients can not depend continuously on f . In [2] this problem is addressed in two ways,
going over what have been done in the discrete case in [3]. In one case, a non-Bessel family and
coefficients depending continuously on f 2 D(A) have been considered, in another one a Bessel
family and coefficients depending continuously on f 2 D(A) only in the graph topology of A
are taken, to exploit the results on bounded operators between different Hilbert spaces. Lastly,
the notion of lower semi-frame controlled by a densely defined operator A or, for short, a weak

lower A-semi-frame is introduced and studied. In particular, a comparison with that one of
lower atomic systems is made. Duality properties are discussed and several possible definitions
for weak A-upper semi-frames are suggested.
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